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Abstract

Here, we present a mapping method OBLIMAP, which projects and interpolates fields
like surface temperature, surface mass balance, and surface height between a geo-
graphical based coordinate system of a Global Circulation Model (GCM) and a rect-
angular based Ice Model (IM). We derive an oblique stereographic projection and its5

inverse, which holds for any area at the Earth surface, and can be combined with two
different interpolation methods. The first one is suited to interpolate the projected fields
of a coarse GCM grid on a fine meshed IM grid. The second one is appropriate for the
opposite case. Both grids are allowed to be arbitrary and irregularly spaced. There-
fore the OBLIMAP technique is suitable for any GCM-IM combination. After a first10

scan of the GCM grid coordinates and the specification of the IM grid, fast mapping of
various fields is possible. To and fro (GCM-IM-GCM) mapping tests with the Climate
Community System Model (CCSM) at T42 resolution (∼313 km) and the Regional At-
mospheric Climate Model (RACMO) at ∼11 km, show average temperature differences
of less than 0.1 K with small standard deviations. OBLIMAP, available at GMD, is an15

accurate, robust and well-documented mapping method for coupling an IM with a GCM
or to map state of the art initial and forcing fields available at geographical coordinates
to any local IM grid with an optimal centered projection.

1 Introduction

Ice sheets, are often poorly resolved in Global Circulation Models (GCM’s). Their ex-20

tent and surface height distribution are fixed or only represented by a thin ice layer.
However, the complex interaction of the ice sheet with the ocean-atmosphere system
demands an interactive approach to improve the reliability of GCM runs; evidently on
geological time scales with a highly variable ice extent, but also for scenario runs with
a time horizon of only 100 years.25
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Quantities that are calculated by GCM’s like the surface temperature and the surface
mass balance, the sum of accumulation and surface melt, are the forcing of an ice sheet
determining its expansion and retreat, which the other way around affect the climate
system via the albedo and surface topography. For this reason GCM’s and IM’s need to
be coupled. In practice this causes problems because GCM’s are designed for global5

simulations on a course grid based on geographical (longitude, latitude) coordinates.
Contrary, the ice dynamical equations are favorably solved on a grid with rectangular
coordinates because the transformation of the ice dynamical equations to geographical
coordinates introduces many extra complicating terms, in particular given the tendency
of including more and more stress terms (see e.g. Pattyn, 2003; Reerink et al., 2009).10

Moreover calculations with a GCM are very time consuming and therefore only limited
runs can be performed with a relatively coarse resolution. Typical grid sizes range from
T42 (∼313 km) to T159 (∼45 km). The typical grid size to model ice sheets is about 20
km or smaller and the extent of the IM grid is not globally, but limited to ice covered
areas. The typical time scale for an ice cap run is ten-thousands of years whereas15

most GCM runs span only a few hundred years. This mismatch in spatial and temporal
scale between IM’s and GCM’s and the difference between their coordinate systems,
demands a coupling approach in which both models are used in their own set up and
in which the resulting fields have to be mapped between them.

Hitherto in a first coupling approach ice sheet models were forced with time slice20

results of a GCM for near future conditions (e.g. Huybrechts et al., 2004; Van de Wal
et al., 2001) or for paleo purposes (e.g. Fabre et al., 1998). This is not that critical as
the mapping and projection is only done once and the IM continues to run offline. In
a kind of intermediate approach de Conto and Pollard (2003) coupled a single polar
ice sheet asynchronously, i.e. the results are exchanged between the two models only25

once in a while. In another intermediate attempt, the climate anomalies from the GCM
are used to drive a mass balance model of an ice sheet, and contrary the fresh water
flux from the IM affects the ocean model (e.g. Huybrechts et al., 2002; Fichefet et al.,
2003). More demanding is the direct use of (regional) climate model output to estimate
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the surface mass balance and the surface temperature to force the IM, and where the
surface topography and other surface properties as the surface temperature and the
albedo are transferred back to the GCM after each time step. An example of such
a study is the work by Ridley et al. (2005) who coupled the HadCM3 model to an
ice-sheet model of Greenland. They used a coarse coupling as temperatures where5

corrected with fixed lapse rates and ablation rates where calculated with a degree-day
model. More recently Mikolajewicz et al. (2007) and Vizcaino et al. (2008) presented
results of a similar approach for the ECHAM model with also schematical ablation
calculations and a limited focus on the coupling technique itself.

They all use a polar stereographic projection, which is adequate for areas roughly10

centered around the poles. However, less centered regions like Greenland, any local
part of Antarctica as the Peninsula, or the Tibetian plateau demand a local centered
projection which is independent of the location, i.e. it should work for any area of in-
terest. Besides, in a mapping strategy for the two way coupling no significant mass or
energy might be lost just by the mapping, and the mapping needs to be fast, OBLIMAP15

suffices all those requirements.
Here we propose to use an oblique stereographic projection because it can be used

for any area; equatorial, high latitude and polar. In the oblique case any area can
be mapped with an optimal centered projection because any axis can be chosen as
the projection axis. Whereas only the north-south pole axis can be used in the polar20

stereographic case, resulting in less optimal projections at lower than polar latitudes.
We derived for both the oblique and the inverse oblique stereographic projection a
single set of analytical equations covering all the projections.

Because the projected grid points will not coincide with the target grid points, the
projected fields have to be interpolated on the target grid. For both mapping directions25

OBLIMAP contains two interpolation methods: for the case of a relative coarse and a
relative fine meshed target grid. The resolution of both model grids is not restricted,
nor their grid distribution, for instance a Gaussian grid is allowed. Both interpolation
methods are robust for data gaps and limited grid areas.
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Comparing the initial GCM fields with their corresponding to and fro (GCM-IM-GCM)
mapped fields tests the OBLIMAP mapping. The differences after mapping are only
due to interpolation (the projection is exact) and are small compared to the local field er-
rors. Average differences and their standard deviations for tests with the Climate Com-
munity System Model (CCSM) and the Regional Atmospheric Climate Model (RACMO)5

data are presented. OBLIMAP is developed as a part of our ice model ICEDYN, but is
added as a stand alone code at the GMD site and is distributed under the terms of the
GNU General Public License.

OBLIMAP is also useful for experiments in which initial fields as ice thickness and
bedrock topography (Lythe et al., 2001; Bamber et al., 2001) are combined with forcing10

fields of a nested higher resolution regional model like RACMO (Van de Berg et al.,
2006; Ettema et al., 2009). Such initial and forcing fields can be combined with an
equal and optimal centered projection towards a local IM subgrid.

2 Method

We start with the description of the mapping as a whole and continue with the separate15

description of two basic components: the projection and the interpolation.

2.1 Mapping method

Mapping of the GCM fields which are defined on a coarse grid with geographical coor-
dinates towards a fine IM grid with rectangular coordinates is a sequence of projection
and interpolation by distance-weighted averaging. The coordinates of the GCM grid20

points are projected by an oblique stereographic projection on to a plane which coin-
cides with the IM grid. The projected GCM grid point coordinates will in general not
coincide with the IM grid point coordinates but fall in between irregularly. For each of
the fine meshed IM grid points we select the nearest projected GCM grid point in each
of the four quadrants around such an IM grid point. With those four nearest projected25
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GCM grid points the resulting mapped value for this IM grid point is obtained by a
Shepard distance-weighted averaging interpolation method. We call this the ‘quadrant
method’. In case a projected point coincides with a target grid point it will dominate the
weighting by adjusting its distance to 1 cm, avoiding division by zero. It depends on the
GCM, but for instance for CCSM there are no GCM grid points within the potentially ice5

covered areas between −90◦≤φ≤–87◦ and 87◦≤φ≤90◦ north (with φ the latitude), in
that case the projected GCM points used for interpolation are located further away in
the quadrants.

Opposite, mapping the IM fields which are defined on a fine meshed grid towards
the coarse GCM grid, is also a sequence of projection and interpolation by distance-10

weighted averaging but within a certain radius. The coordinates of the IM grid points
are projected by an inverse oblique stereographic projection on to the curved plane
which coincides with the Earth surface and the GCM grid. The projected IM grid point
coordinates coincide not necessarily with the GCM grid points. In case of a relative
coarse GCM grid size all projected IM points within a radius of the order of half the15

GCM grid size are included by a Shepard distance-weighted averaging interpolation
method to obtain a representative value for this GCM grid point. We call this the “radius
method”. In this method projected points at zero distance are neglected. Because of
the limited extent of the IM grid, only those GCM points within the considered area will
participate in the inverse projection.20

2.2 The oblique stereographic projection

OBLIMAP is capable to map any area on the Earth surface for which the middle point of
interest M = (λM , φM ) is specified. This area is projected from the center of projection
C, being the anti-pole of M, on a plane lying parallel to the tangent plane in M but some
distance inward. This distance has to be specified by an angle α which determines the25

exact stereographic projection.
First we define the used coordinate systems, thereupon we continue with a qual-

itative description of the oblique stereographic projection and its inverse before we
940
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present the results.

2.2.1 Involved coordinate systems

We use the following coordinate systems in the derivation of the projection formula’s:

– The 3-D rectangular cartesian coordinate system: (x3-D, y3-D, z3-D), with x3-D,
y3-D, z3-D∈R and with the origin O= (x3-D=0, y3-D=0, z3-D=0). See Fig. 1.5

– The 3-D spherical coordinate system: (λ, φ, r), with 0◦≤λ≤360◦ and with the origin
O=(λ, φ, r=0), which coincides with the origin O of the 3-D rectangular cartesian
coordinate system. See Fig. 1.

– The 2-D rectangular cartesian coordinate system: (xIM, yIM), with xIM, yIM∈R
where we define the origin M ′=(xIM+0, yIM=0). The plane spanned by xIM and10

yIM is called S ′. In the 3-D spherical coordinate system the coordinates of the ori-
gin M ′ are M ′=(λM , φM , R). The IM grid points are points in this 2-D rectangular
cartesian coordinate system. See the red colored plane in Fig. 2.

– The 2-D geographical longitude-latitude coordinate system defined on the Earth’s
surface: (lon, lat) with 0◦≤lon≤360◦ and −90◦≤lat≤90◦. The curved spherical15

plane representing the surface of the earth is defined as S. In the 3-D spherical
coordinate system these 2-D (lon, lat) coordinates can be described with (λ, φ,
r)=(λ, φ, R) with R the radius (in meter) of S and the earth. In fact these angle
coordinates equal the (lon, lat) coordinates, so lon=λ and lat=φ. The GCM grid
is based on these coordinates, see the λ and φ in Fig. 1 in case r=R.20

Figure 1 illustrates the relation between both 3-D systems, and Fig. 2 illustrates
the location of the plane S ′ in the 3-D rectangular coordinate system. For the 2-D
geographical and the 3-D spherical coordinate systems the value of the longitude λ is
undetermined at the North Pole (NP) and at the South Pole (SP).
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2.2.2 Description of the projection

In an oblique stereographic projection the points from a spherical surface S are pro-
jected to a rectangular plane S ′, see Fig. 2 for the projection of a single point P . This
spherical surface S is part of a sphere with radius R. In our case the GCM grid points
are points on S and the IM grid points are points on S ′. Roughly the oblique stere-5

ographic projection can be described as follows: Consider a specified point M= (λM ,
φM , R) in the middle of an area of interest on S. The center of projection C is the
anti-pole of M, it lies on S but just at the opposite side of S. An arbitrary point P on S
will be projected along the line

−−→
CP into the plane S ′, see Fig. 2. Usually P is a point

not too far from M. The projected point P ′ is the point of intersection of the line
−−→
CP10

and the plane S ′. The plane S ′ is parallel to the plane which is tangent to the sphere S
in point M, and therefore perpendicular to

−−→
CM as well. The exact location of S ′ (along−−→

CM) depends on the place of intersection of S ′ with S. If I is this point of intersection
of S ′ with S, then α is the angle MOI which determines the exact stereographic projec-
tion, see Fig. 3. Often the complement angle β or α is used to specify the stereografic15

projection: β=90◦−α. M ′ is the point of intersection of
−−→
CM (or

−−→
OM) and S ’, and will be

the origin of the 2-D rectangular coordinates xIM and yIM of the IM grid which coincides
with the plane S ’. The extents of the IM grid xmin

IM , xmax
IM , ymin

IM and ymax
IM of S ’ have to be

specified, in OBLIMAP in terms of the grid sizes and the grid spacings.
At the intersection circle of S and S ’, distances are projected one to one. While20

distances on S at the M side of S ′ shrink and distances on S at the O side enlarge, see
Fig. 3. Therefore an optimal α leads on average to a one to one projection (or close to
that) of the area of interest. A reasonable α can be estimated by requiring that half the
IM grid area falls inside the intersection circle with radius M ′I :

π(M ′I)2 =
1
2
NxNy∆x∆y (2.1)25

with Nx, Ny , ∆x, and ∆y the number of grid points and the grid spacing in x- and
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y-direction.
Then, from Fig. 3 one can immediately derive that an optimal α for this grid is

α = arcsin

(
1
R

√
1

2π
NxNy∆x∆y

)
(2.2)

With the red colored IM grid in Fig. 2 at the correct position and with α as in Eq. (2.2),
an optimal projection is obtained. For Antarctica often α=19◦ is chosen, and for Green-5

land, because it is smaller, a lower α will be better.
If Antarctica is the area of interest we choose M equal to the SP. In that case the

projection is called a polar stereographic projection for which our formula’s hold as well.

The stereographic projection is called oblique if the axis
−−→
CM can be any axis, then M

can be any point on S. E.g. in case of Greenland, we take M = (λM=320◦, φM=72◦).10

To summarize: the distance
−−−→
MM′ is controlled by specifying α which determines the

exact oblique stereographic projection. The area of interest is chosen by specifying
M (λM , φM ) and the IM grid extents xmin

IM , xmax
IM , ymin

IM and ymax
IM .

2.2.3 The oblique stereographic projection

The longitude-latitude coordinates λP and φP of an arbitrary point P on the spherical15

surface S are projected to a rectangular plane S ′ which coincides with the IM grid with
origin M ′. After specifying λM and φM , the coordinates xIMP ′

and yIMP ′
of the projected

point P ′ relative to the IM grid can be calculated. Under the condition

λM = 0◦ for φM = −90◦ & φM = 90◦ (2.3)

the final result for the oblique stereographic projection is20

xIMP ′
= R (cosφP sin (λP − λM )) tP ′ (2.4)
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yIMP ′
= R [sinφP cosφM − (cosφP sinφM ) cos (λP − λM )] tP ′ (2.5)

with

tP ′ =
1 + cosα

1 + cosφP cosφM cos (λP − λM ) + sinφP sinφM
(2.6)

which is derived in Appendix A. The angles are in degrees and the distances in meter.5

2.2.4 The inverse oblique stereographic projection

The final result for the inverse oblique stereographic projection for an arbitrary point P ′

in S ′ to P in S, is given by

λP = 180◦ + 180
π arctan

y3-D
P

x3-D
P

λP = 180
π arctan

y3-D
P

x3-D
P

λP = 360◦ + 180
π arctan

y3-D
P

x3-D
P

λP = 90◦

λP = 270◦

λP = 0◦


for

x3-D
P < 0

x3-D
P > 0 & y3-D

P ≥ 0

x3-D
P > 0 & y3-D

P < 0

x3-D
P = 0 & y3-D

P > 0

x3-D
P = 0 & y3-D

P < 0

x3-D
P = 0 & y3-D

P = 0

(2.7)

and10

φP = 180
π arctan

z3-D
P√

x3-D
P

2
+y3-D

P
2

φP = 90◦

φP = −90◦

 for
x3-D
P 6= 0 or y3-D

P 6= 0
x3-D
P = y3-D

P = 0 & z3-D
P > 0

x3-D
P = y3-D

P = 0 & z3-D
P < 0

(2.8)
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with

x3-D
P = R(cos λM cosφM )(tP − 1) + x3-D

P ′ tP (2.9)

y3-D
P = R(sin λM cosφM )(tP − 1) + y3-D

P ′ tP (2.10)

z3-D
P = R( sinφM )(tP − 1) + z3-D

P ′ tP (2.11)

in which5

tP =
2R2 + 2Ra

R2 + 2Ra +
(
x3-D
P ′

)2
+
(
y3-D
P ′

)2
+
(
z3-D
P ′

)2
(2.12)

in which

a = (cos λM cosφM )x3-D
P ′ + (sin λM cosφM ) y3-D

P ′ + (sinφM ) z3-D
P ′ (2.13)

and

x3-D
P ′ = R cosα cos λM cosφM − (sin λM )xIMP ′

− (cos λM sinφM ) yIMP ′
(2.14)10

y3-D
P ′ = R cosα sin λM cosφM + (cos λM )xIMP ′

− (sin λM sinφM ) yIMP ′
(2.15)

z3-D
P ′ = R cosα sinφM + (cosφM ) yIMP ′

(2.16)

which is derived in Appendix B.
The angles are in degrees and the distances in meter.

2.3 Interpolation of the projected fields15

With the formula’s presented in Sect. 2.2.3 and 2.2.4 we can project any GCM grid
point (λ, φ) towards an IM grid (xIM, yIM), and vice versa. Suppose we want to map
a two-dimensional GCM field (F 2-D

gcm ) to the IM grid, then the projected points will in
general not coincide with the IM grid points. Therefore we determine the mapped two-
dimensional IM field (F 2-D

im ) values at the IM grid by interpolation of the projected GCM20
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points in the surrounding quadrants. In the opposite map direction, we determine the
F 2-D

gcm values at the GCM grid by averaging all projected IM grid points within a certain
radius, where each projected IM grid point contributes depending on its distance to the
considered GCM point.

2.3.1 Interpolation on to the IM grid of a projected GCM field: quadrant method5

Let i and j be the longitudinal and latitudinal grid indices for the GCM grid and
Pi j=(λ(i ), φ(j )) a point at the GCM grid. Furthermore, let m and n be the xIM and
yIM grid indices for the IM grid. Then corresponding to Pi j , P

′
i j is the projected point rel-

ative to the IM coordinate system and will in general not coincide with an IM grid point
but fall in between, see the blue crosses in Fig. 4. To obtain the values of the F 2-D

im field10

at the IM grid points (xIM(m), yIM(n)), the F 2-D
gcm field values of the nearest P ′

i j points are
interpolated. Since these P ′

i j do not lie in an equidistant manner around (xIM(m), yIM(n))
we decided to use our quadrant method based on the Shepard interpolation technique
(Shephard, 1968).

In Fig. 4 an imaginary cross positioned at each IM grid point (xIM(m), yIM(n)) divides15

the area around the grid point into four quadrants. For each m, n combination we
determine in each quadrant the closest P ′

i j to (xIM(m), yIM(n)). Figure 4 demonstrates
an example with P ′

I , P ′
I I , P

′
I I I and P ′

IV being the nearest IM grid points to the red cross.
Let dI , dI I , dI I I and dIV be the Euclidian distance for the four quadrants respectively

from each of these points to the considered IM grid point (xIM(m), yIM(n)), then the20

formula for the Shepard distance-weighted averaging interpolation becomes:

F 2-D
im (xIM(m), yIM(n)) =

IV∑
q=I

F 2-D
gcm (Pq)

de
q

IV∑
q=I

1
de
q

(2.17)

where q counts over the four quadrants I, I I, I I I , and IV , Pq is the nearest projected
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GCM grid point in quadrant q at a distance dq relative to the considered IM grid point
(m,n), and e is the distance weighting exponent, usually e=2 is considered to be the
fairest choice for this type of problems (Shephard, 1968).

2.3.2 Interpolation on to the GCM grid of a projected IM field: radius method

In this case the P ′
mn points coincide with the IM grid points, and the corresponding5

projeced points Pmn will in general not coincide with the GCM grid points (λ(i ), φ(j )).
Because the Pmn will not lie in an equidistant manner around (λ(i ), φ(j )) and because
in this case the large GCM grid should represent the many fine IM grid points in that
area, the radius method is used which equals the Shepard interpolation (Shephard,
1968) for a radius Rs of about half the GCM grid size. The distance dmn(i , j ) of a point10

Pmn to the point Pi j at (λ(i ), φ(j )) is the shortest path over the spherical surface S along
a great circle:

dmn(i , j ) = R arccos
[
cos(φPmn

) cos(φPi j ) cos(φPmn
−φPi j ) + sin(φPmn

) sin(φPi j )
]

(2.18)

Weighting all projected IM points within a radius Rs using the Shepard distance-
weighted method, we get:15

F 2-D
gcm(λ(i ), φ(j )) =

∑
dmn(i ,j )≤Rs

F 2-D
im (Pmn)
dmn(i ,j )e∑

d (i ,j )≤Rs

1
dmn(i ,j )e

(2.19)

To treat the GCM points at the edge of the IM grid correctly, the IM grid is extended
with the grid edge values.
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3 Model specifications

3.1 The CCSM model

The Community Climate System Model (CCSM, see http://www.ccsm.ucar.edu), de-
signed by NCAR is a GCM with four separate model components simulating the earths
atmosphere, ocean, land surface, and sea-ice which are coupled by a central cou-5

pler component. We are mostly interested in the fields from the CCSM3 atmosphere
component for realistic OBLIMAP mapping tests.

The CCSM3 atmosphere fields are defined on a regular longitude-latitude T42 grid
with 128×64 grid points, see Fig. 5. It has a horizontal resolution of 2.8◦. The grid
almost covers the complete globe but the latitude is restricted between −87◦ and +87◦

10

north. Data output are in netcdf format. We used the December–February averages
of the last five years of a present day control run. The results of this control run agree
with Collins et al. (2005).

For the surface height we used the surface geopotential (PHIS) from CCSM. The
CCSM surface temperature (TS) is the temperature of the earth surface at this surface15

geopotential. For the surface mass balance we added two CCSM components: the
convective snow rate (PRECSC) and the large-scale snow rate (PRECSL). We left
out the evaporation and the runoff in the CCSM cases because these fields are only
available in the CCSM land files for the land mask. And the complications to extend
these fields are not in proportion to our goal of just providing realistic fields for our test20

cases.

3.2 The RACMO model

The Regional Climate Model (RACMO2 van Meijgaard et al., 2009) has been used
to obtain best estimates for present day atmospheric fields using model physics and
all available observations. Here, we use the surface temperature and surface mass25

balance resulting from the regional run for Antarctica with RACMO2/ANT (Van de
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Berg et al., 2006) and from the regional run for Greenland with RACMO2/GR (Et-
tema et al., 2009). The RACMO2/ANT data is defined on a reduced gaussian grid
with 134×122 grid points and a resolution of approximately 55 km. RACMO2/GR data
is defined on a reduced gaussian grid with 246×312 grid points and a resolution of
approximately 11 km.5

The RACMO surface mass balance fields are masked to the ice covered area be-
cause the runoff is only calculated there. We estimated the surface mass balance of
the majority of the non ice covered points by summing the precipitation and the evap-
oration and subtracting 800 millimeter water equivalent runoff per year, but the surface
mass balance for points close to the ice margin are estimated with help of the ice10

masked points in a short radius by a Shephard distance weighting to provide a better
local estimate.

3.3 The ICEDYN model

The ICEDYN model, developed at IMAU-Utrecht, is a so called 3-D thermomechanical
ice model which is suited to simulate large ice caps like Antarctica and Greenland or15

smaller glacier systems over hundred thousands of years. The current ICEDYN revi-
sion is rather flexible by using a configuration file in which all grid specifications and
time stepping choices can be specified. Choices for proper local forcings as surface
temperature and surface mass balance can be specified in this configuration file, and
new ones can easily be added in the current modular set up of ICEDYN. Default a 3-D20

thermomechanical ice-sheet is coupled with a 2-D ice-shelf, but also a simple shelf-
less shallow ice approximation (SIA) computation is optional from the configuration file.
Both input and output of ICEDYN are in netcdf format. ICEDYN suffices the EISMINT
benchmark experiments (Huybrechts et al., 1996; Payne et al., 2000), which can be
repeated by just using the EISMINT configuration file.25

Depending on the experimental set up, the ICEDYN model is capable of modeling
each ice cap for which certain initial and reference fields are available and for which
the forcing is known. OBLIMAP is developed as a part of ICEDYN and has a similar
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flexible grid specification from a configuration file. Using ICEDYN is convenient to test
the OBLIMAP mapping for many grid configurations. The coordinates of the ICEDYN
grid points are rectangular cartesian coordinates like the IM grid points in OBLIMAP.

The ICEDYN fields are defined on a rectangular (xIM, yIM) grid, in the case of Fig. 6
with 281×281 grid points. In this case the default horizontal resolution in x- and y-5

direction is 20 km and represents Antarctica with a limited area of 5600 km×5600 km.

4 Mapping experiments

Several realistic mapping experiments with CCSM and RACMO data will demonstrate
the performance of OBLIMAP. Each experiment concerns a particular area and GCM
data set of interest for which the surface temperature (Ts), the surface mass balance10

(MB), and the surface height (Hs) will be mapped to and fro. The deviations between
these to and fro mapped 2-D fields and the initial field will be used to quantify the quality
of the mapping.

Grid point coordinates which are to and fro projected with the oblique stereographic
projection and its inverse remain identical, which means the projection is exact. How-15

ever, projected points have to be interpolated on the target grid, this causes deviations
after to and fro mapping. These deviations evidently increase in case the resolution
of the IM and the GCM differs. Therefore, in our experiments we start with the fields
of the coarse GCM to prevent interfering deviations which are not due to the mapping
technique itself.20

In most situations we use the quadrant method to interpolate. But in case the target
grid resolution is about four times coarser the radius method is used, representing a
better estimate of the many fine gridded points within each single coarse target grid
point. After IM-GCM mapping, the mapped field values of the limited IM area are
merged with those initial GCM field values which are not involved in the mapping.25

Averages and standard deviations (σ) are calculated over the involved mapped points
only.
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The miscellaneous experiments presented here show the accuracy and the robust-
ness of the OBLIMAP mapping for two different types of GCM data. The fourteen
experiments and their specifications are listed in Table 1, the abbreviations of the data
sets are explained in Table 2.

The deviation field is the to and fro mapped GCM field minus the initial GCM field.5

The average mapped deviation (AMD) is the field average of this deviation field, and
are presented in Table C together with the 2σ confidence interval. In addition the field
range and the field average are shown in Table C to judge these AMD and 2σ inter-
vals. For several of the experiments we show in Figs. 7–15 the initial GCM field, the
deviation field, and the mapped IM field for Ts, MB, and Hs. The to and fro mapped10

GCM fields are omitted because they look identical, as a result of the accurate map-
ping. At the bottom of these figures the distributions of the deviations for Ts, MB, and
Hs are shown, where we sampled the full deviation range in 300 intervals. Most of them
are sharply peaked around zero, indicating that the majority of the deviations are quite
small. Although these distributions are not normal, their 2σ interval representsabout15

95% confidence. Points falling within 1σ and 2σ are plotted blue to visualize the confi-
dence intervals.

If necessary OBLIMAP is capable to convert the units of Ts, MB, and Hs respectively
to Kelvin, meter ice equivalent (mieq) per year (using an ice density of 910 kg m−3),
and meter, for the IM. In the tables and the figures all results including the GCM ones20

are presented in these IM units.
In experiments 1–3 the fields are mapped between CCSM and ICEDYN, for the re-

sults see Table C. Because in these experiments the CCSM grid is coarse compared
to the ICEDYN grid we used for the ICEDYN-CCSM mapping the radius method with
Rs∼125 km, which is 0.8 times half the the CCSM grid diameter. We multiplied by a25

factor 0.8 to ensure we include only points within each grid cell itself, because the grid
sizes differ sligtly per latitude whereas Rs is taken constant in the current version of
OBLIMAP. In Figs. 7 and 8 we show the results for Antarctica and Greenland, note that
the low number of involved points for Greenland is reflected in the distribution plots. A
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lack of CCSM data between −90◦ and −87◦ complicates the mapping for Antarctica,
however with our quadrant interpolation method we obtain realistic results of the south
pole area for ICEDYN.

The higher RACMO resolution allows mapping tests on fields with sharper contours
and larger gradients. Experiments 4–11 map the RACMO/GR data set RG2 and ex-5

periments 12–14 map the RACMO/ANT data set RA, or parts of them. For the results
see Table C. In experiment 4, see Fig. 9, the IM grid covers Greenland entirely with
a 10 km resolution. While in experiments 5–8, see Figs. 10–13, and in experiments
9–11 grids with a resolution of a few kilometer are used to map local areas. Experi-
ment 12, see Fig. 14, concerns Antarctica entirely. While experiment 13, see Fig. 15,10

and experiment 14 show a local mapping case of this RA data set. The difference
in grid resolution is that large for the ICEDYN-RACMO mapping that we used a ra-
dius interpolation method with Rs∼4.4 km for experiments 5–11 and with ∼22 km for
experiments 13–14 (see Table 1).

In general we see for all the experiments (Figs. 7–15) that the range and pattern15

of the mapped IM field are in very good agreement with the initial GCM fields. And as
mentioned before, after to and fro mapping the GCM fields look identical. From Table C
and Figs. 7–15 we see for various grids for different locations a maximum AMD of 0.1 K
for Ts. The AMD for Hs is about a few meter for these data. The AMD for MB varies
between one millimeter and a centimeter ice equivalent per year, depending on the20

range of MB. The interpretation of the deviations of a field with a relative wide range
around zero is more complicated because of the difference in relative deviations. In
these cases the range relative deviation (RRD), equal to the percentage of the AMD di-
vided by the field range, might be more convenient to judge the quality of the mapping.
The drawback of the RRD is its dependence on the incidental field extremes. However,25

the fact that the RRD is for all experiments below 0.5% confirms the accuracy of the
OBLIMAP mapping.

The largest deviations in experiment 4 concern the areas Ellesmere, Jacobshavn,
Helheim, and Storstrømmen, containing the largest gradients with irregular patterns.
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These areas are locally mapped in experiments 5, 8, 9 and 11. For instance, the
results of experiments 5 and 8 for Ellesmere and Jakobshavn in Fig. 10 and in Fig. 13
show a detailed mapping. Note that experiment 10 for Humboldt with exactly the same
mapping conditions as experiment 8 for Jakobshavn (see Table 1), reveals about two
times smaller deviations because of the less complex gradients in the Humbold fields5

(see Table 1).
The local experiments show smaller AMD’s and smaller 2σ intervals. The reason

has to do with the large gradients and the smaller IM grid resolution in combination
with the radius method which is used for the IM-GCM mapping in those cases. In
the local experiments the contributing points within Rs are originating predominantly10

from the same GCM grid points. Whereas in experiment 4 the quadrant method uses
the values of the neighbour GCM points, causing larger deviations due to the large
gradients.

5 Discussion

Our formula’s are capable to perform a projection of a field defined on a grid which is15

based on geographical coordinates around any point at the Earth surface with an opti-
mal centered projection for this point. There are no exceptions, the polar stereographic
projection is included in these formula’s, and no area dependent tuning is required. In
case the grid is irregular, in practice this concerns the GCM grid, OBLIMAP contains
the option to read the 2-D fields with the longitude and latitude coordinates of the grid20

points. This allows the projection of fields which are defined on a grid with an arbitrary
distribution, because of the combination with the quadrant and the radius interpolation
method which search and weight by distance only. The latter makes the method also
robust for data gaps.

The optimal α could be different from Eq. (2.2) in case the area of interest differs25

significant from the total grid area. For example, one needs a relative large grid for
Antarctica to include the Peninsula branch. In that case one can choose αI a little bit
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smaller, fitting better to a one to one projection for the average continent. For example,
Eq. (2.2) gives α=20.6◦ in experiments 1 and 12 for Antarctica, but we used 19◦.

Depending on the ratio of the IM and GCM resolution and on the mapping direction,
the quadrant or the radius interpolation method can be used. In case both grid res-
olutions are of similar size or in case the target grid is finer, the quadrant method is5

evidently the best option. Otherwise, in case the target grid is about four times coarser
the radius method is most suited representing more than the centered points only. Ac-
tually, in our mapping experiments the quadrant method generates about ten times
lower AMD’s for those latter cases, but that is because of our experimental set up in
which we start with the coarse grid. So, we used the radius method representing a10

realistic and fair test of the OBLIMAP performance for those cases.
Of course the OBLIMAP performance is sensitive to data gaps, to a large difference

in resolution between the IM and the GCM, and to steep gradients in combination with
irregular field patterns, factors controling any interpolation. However, OBLIMAP treats
them correctly, and also the limited extend of the IM grid is treated properly, which is15

reflected by the results revealing no artefacts.
The OBLIMAP fortran90 code is easy to implement because it is compact and mod-

ular. Simultaneous and fast mapping of fields is possible after a first scan of both grids
and by knowing the projection specifications. The scan, by far the most time consum-
ing, comprises the projection of the grid coordinates to the target grid and the search20

of the nearby projected points thereafter, necessary to estimate the field value of each
target grid point by interpolation. By storing the indices of the projected grid points and
the distance between those points and the target grid points, a subsequent mapping
consumes far less time.

The simultaneous 2-D mapping property of OBLIMAP allows mapping of 3-D fields25

layer by layer. Note that each layer will be treated equally with respect to the projection,
i.e. no vertical adjustments are applied for the difference in R. Actually, any field is
mapped as a 2-D level field, i.e. no volume conserving corrections are applied for a
field like ice thickness.
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Down scaling of the forcing fields after mapping will be required to match the ice
topography. This part of the IM-GCM coupling is beyond the scope of the work pre-
sented here. However, because the topographic data from Bamber et al. (2001) are
used for the RACMO run of Greenland, a present day equilibrium run of the Greenland
ice sheet is directly possible with the mapped RACMO Ts and MB because it matches5

with an equally (re)mapped Bamber et al. (2001) topography.

6 Conclusions

This work accompanies the OBLIMAP mapping routines which are available from the
GMD site. The core of these routines are the oblique stereographic projection and the
inverse oblique stereographic projection. Besides this optimal centered projection, the10

routines deal with all kinds of IM-GCM resolution ratios with respect to the interpolation
on to these grids, with data gaps, with limited grid extents, with adjustable unit conver-
sions, with merging the local IM results with the GCM data, and they incorporate a fast
mapping option once a scan of the contributing projected points around each target
grid point is performed.15

The scan needs the grid extents. The GCM grid extents are deduced from the initial
GCM grid, whereas the IM grid extents are specified by Nx, Ny , ∆x, ∆y . An optimal
intersection angle α coheres with the IM extents, and has to be specified. The same
yields for the coordinates λM and φM belonging to the central point of the projection.
The final scan option concerns the choice between the quadrant and the radius inter-20

polation method for each mapping direction. In case of the radius method the search
radius Rs has to be specified as well.

With three different data sets of various resolutions and based on two different GCM’s
(CCSM and RACMO), fourteen miscellaneous mapping experiments show accurate re-
sults for several locations. The surface temperature deviations with an average of 0.1 K25

or less, for which 95% of those deviations is within 0.1 up to 0.7 K, reflecting the accu-
racy. The results of the surface mass balance and the surface height are more complex
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to interpret because relative small deviations of large values are mixed with those of
small values, however their average deviation compared to their field range deviates
less then 0.4%. Considering the difference in field patterns the range relative devia-
tions are comparable for all three quantities. To put these results in perspective, the
uncertainty of the CCSM surface temperature have to be assumed about a few degrees5

(Collins et al., 2005), for RACMO-Greenland 2 K (J. Ettema, personal comminication,
2009), and for RACMO-Antarctica 2–4 K (Van de Berg et al., 2007).

Appendix A

Derivation of the oblique stereographic projection: from GCM to IM10

Each GCM point P on S is projected along
−−→
CP to P ′ in S ′, whereupon its relative

position with respect to the IM coordinates xIM and yIM are determined, see Fig. 2. The
approach will be:

– Specifying α, which defines the exact oblique stereographic projection.

– Specifying λM and φM the coordinates of the middle point of interset M, with15

which the projection axis for any point P is known.

– Express M and M ′ in 3-D rectangular coordinates.

– Find a parameterized 3-D vector expression for the projection axis
−−→
CP .

– Find the 3-D rectangular coordinates of P ′, which is the point of intersection of−−→
CP and S ′.20

– Find the coordinates of P ′ relative to the IM coordinate system.
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The rectangular coordinates in R3 of a point M in the middle of an area of interest on
S with a radius R, can be expressed in the spherical coordinates of M (λ, φ, r)=(λM ,
φM , R) with use of Eq. C2

M
(
x3-D, y3-D, z3-D

)
=
−−→
OM = R (cos λM cosφM , sin λM cosφM , sinφM ) (A1)

Because M ′ is situated on
−−→
OM (see Fig. 2), we have in spherical coordinates in R3

5

M ′ = (λM ′ , φM ′ , rM ′) = (λM , φM , R cosα) (A2)

In rectangular coordinates in R3 this becomes with use of Eq. C2

M ′
(
x3-D, y3-D, z3-D

)
=

−−−→
OM′ = R cosα (cos λM cosφM , sin λM cosφM , sinφM ) (A3)

In an oblique stereographic projection an arbitrary point P (not too far from M) on

the spherical surface S is projected along the line
−−→
CP to a rectangular plane S ′. The10

projected point P ′ is situated at the point of intersection of the line
−−→
CP and the plane

S ′. By using a parameterized 3-D vector representation
−−→
CQ along the line

−−→
CP and

an equation for the plane S ′ we can calculate the 3-D rectangular coordinates of P ′.
The relative position of P ′ to the axes xIM and yIM of the IM grid give the coordinates
xIMP ′

and yIMP ′
of P ′ in the IM grid we are looking for. For the latter step we need the15

parameterized 3-D vector representations of the IM grid axes l3-D
xIM

and l3-D
yIM

.

A1 Determine P ′

In this section we will determine the 3-D rectangular coordinates of the projected point

P ′. In Sect. A1.1 a parameter representation for the vector
−−→
CQ along the line

−−→
CP is

given, and in Sect. A1.2 an equation for the plane S ′. In Sect. A1.3 we determine the20

parameter value tP ′ belonging to the point P ′, the intersection point of
−−→
CQ and S ′. In

the last step, in Sect. A1.4, we substitute this tP ′ into the parameter representation of−−→
CQ to obtain the coordinates of P ′.
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A1.1 The parameter representation
−−→
CQ

For each arbitrary point P=(λP , φP , R) on S the vector
−−→
OP in 3-D rectangular coordi-

nates is

P
(
x3-D, y3-D, z3-D

)
=
−−→
OP = R (cos λP cosφP , sin λP cosφP , sinφP ) (A4)

If Q is a point situated on the line
−−→
CP then the parameter representation of

−−→
CQ can be5

given by

−−→
CQ =

−−→
OC +

(−−→
OP −

−−→
OC
)
t for some t ∈ R (A5)

Because C and M are anti-poles we have

−−→
OC = −

−−→
OM (A6)

this substituted in Eq. A5 gives10

−−→
CQ = −

−−→
OM +

(−−→
OP +

−−→
OM
)
t (A7)

which becomes with Eq. A1 and Eq. A4
−−→
CQ = −R (cos λM cosφM , sin λM cosφM , sinφM ) + R(cos λP cosφP

+ cos λM cosφM , sin λP cosφP + sin λM cosφM , sinφP + sinφM )t

So the coordinates of Q on
−−→
CQ=

(
x3-D
Q , y3-D

Q , z3-D
Q

)
expressed in t are15

x3-D
Q = R ((cos λM cosφM )(t − 1) + (cos λP cosφP )t) (A8)

y3-D
Q = R ((sin λM cosφM )(t − 1) + (sin λP cosφP )t) (A9)

z3-D
Q = R (( sinφM )(t − 1) + ( sinφP )t) (A10)
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A1.2 The equation of S ′

Because
−−→
OM is perpendicular to S ′ we can take the components of M (see Eq. A1) as

the normal vector NS′ for S ′

NS′

(
x3-D, y3-D, z3-D

)
= (cos λM cosφM , sin λM cosφM , sinφM ) (A11)

Using this as the normal vector in Eq. C3, this gives an equation for S ′
5

S ′ : cos λM cosφMx3-D + sin λM cosφMy3-D + sinφMz3-D = k (A12)

for some k∈R. To determine k we fill in M ′ (see Eq. A3) because it is part of S ′, to
obtain the final equation for S ′:

S ′ : cos λM cosφMx3-D + sin λM cosφMy3-D + sinφMz3-D = R cosα (A13)

A1.3 Determing the parameter t=tP ′ for P ′
10

P ′ is situated at the intersection of
−−→
CQ and S ′. To obtain tP ′ we substitute the 3-D

rectangular coordinates of Q=P ′ given by Eqs. A8–A10 for t=tP ′ into the plane Eq. A13
for S ′

cos λM cosφM [R ((cos λM cosφM )(tP ′ − 1) + (cos λP cosφP )tP ′)]

+ sin λM cosφM [R ((sin λM cosφM )(tP ′ − 1) + (sin λP cosφP )tP ′)]15

+ sinφM [R (( sinφM )(tP ′ − 1) + ( sinφP )tP ′)] = R cosα

which equals

(tP ′ − 1) + [cosφM cosφP (cos λM cos λP + sin λM sin λP ) + sinφM sinφP ] tP ′ = cosα

and with Eq. C5 this becomes

(1 + cosφM cosφP cos(λM − λP ) + sinφM sinφP )tP ′ = 1 + cosα20
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so finally we get for tP ′

tP ′ =
1 + cosα

1 + cosφM cosφP cos(λM − λP ) + sinφM sinφP
(A14)

A1.4 The coordinates of P ′

Substitution of t=tP ′ given by Eq. A14 into Eqs. A8–A10 for Q, gives the coordinates of
P ′. So the coordinates of P ′ are given by5

x3-D
P ′ = R ((cos λM cosφM )(tP ′ − 1) + (cos λP cosφP )tP ′) (A15)

y3-D
P ′ = R ((sin λM cosφM )(tP ′ − 1) + (sin λP cosφP )tP ′) (A16)

z3-D
P ′ = R (( sinφM )(tP ′ − 1) + ( sinφP )tP ′) (A17)

with

tP ′ =
1 + cosα

1 + cosφM cosφP cos(λM − λP ) + sinφM sinφP
(A18)10

A2 The parameter representations of the IM grid axes

The IM grid coincides with the plane S ′. The origin of the IM axes xIM and yIM coincides
with the point M ′ = (xIM = 0, yIM = 0). In this section we will obtain the parameter rep-
resentations l3-D

xIM
and l3-D

yIM
for the xIM and yIM axes respectively, in the 3-D rectangular

coordinates.15

A2.1 The inner help sphere T

We introduce an extra inner help sphere T which goes through M ′ with O as origin.
Because T goes through M ′ the radius of T is RT=Rcosα. The plane S ′ is the tangent
plane in M ′ to this help sphere T . The tangent line to T in the positive λ direction at point
M ′ in the plane S ′ is chosen to coincide with the positive xIM axis, while the tangent20
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line to T in the positive φ direction at point M ′ in the plane S ′ is chosen to coincide with
the positive yIM axis. To calculate the 3-D parameter representations of these xIM and
yIM axes of the IM grid we need respectively the derivatives in λ and φ direction of T in
M ′.

The 3-D rectangular coordinates of T can with Eq. C2 be given as5

T
(
x3-D, y3-D, z3-D

)
= R cosα (cos λ cosφ, sin λ cosφ, sinφ) (A19)

A2.2 The λ and φ-derivatives in M ′ on T

The λ-derivative on the spherical surface T in rectangular coordinates is

∂λT
(
x3-D, y3-D, z3-D

)
= ∂λ(R cosα(cos λ cosφ, sin λ cosφ, sinφ))

= R cosα cosφ(− sin λ, cos λ,0)
(A20)

with norm10 ∣∣∣∂λT
(
x3-D, y3-D, z3-D

)∣∣∣ = R cosα |cosφ| (A21)

The normalized λ-derivative vector in point M ′ is then

∂λT (M ′) =
cosφM

|cosφM |
(sin λM , cos λM ,0) (A22)

For the range −90◦<φM<90◦ we have that

cosφM

|cosφM |
= 1 (A23)15

Except for the north and the south pole, which should be treated separately anyhow
because λ is not unambigious at the poles, Eq. A22 becomes

∂λT (M ′) = (− sin λM , cos λM ,0) for − 90◦ < φM < 90◦ (A24)
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The φ-derivative on the spherical surface T in rectangular coordinates is

∂φT
(
x3-D, y3-D, z3-D

)
= ∂φ (R cosα (cosφ, sin λ cosφ, sinφ))

= R cosα (− cos λ sinφ,− sin λ sinφ, cosφ)
(A25)

with norm∣∣∣∂φT (x3-D, y3-D, z3-D)
∣∣∣ = R cosα (A26)

The normalized φ-derivative vector in point M ′ is then5

∂λT (M ′) = (− cos λM sinφM ,− sin λM sinφM , cosφM ) (A27)

A2.3 The parameter representations of l3-D
xIM

and l3-D
yIM

The parameter representations l3-D
xIM

and l3-D
yIM

describe respectively the xIM and the yIM
axes in 3-D rectangular coordinates with parameters u and v , respectively:

l3-D
xIM

=
−−−→
OM′ + l3-D

xIM
u for some u ∈ R (A28)10

l3-D
yIM

=
−−−→
OM′ + l3-D

yIM
v for some v ∈ R (A29)

Here are dl
3-D
xIM

and dl
3-D
yIM

the normalized xIM and yIM-directions respectively. Actually u
and v are the xIM and yIM coordinates of some point in S ′, because their values are the
values along the axes and relative to the origin M ′ of the IM grid.15

The plane S ′ is the tangent plane in M ′ to T . The tangent line to T in the positive
λ direction at point M ′ in the plane S ′ is chosen to coincide with the positive xIM axis,
while the tangent line to T in the positive φ direction at point M ′ in the plane S ′ is
chosen to coincide with the positive yIM axis.
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Therefore the λ-derivative on T in M ′ gives the direction of the xIM-axis and the φ-
derivative on T in M ′ gives the direction of the yIM-axis. So the normalized λ-derivative
vector in M ′ equals the normalized xIM direction vector and the normalized φ-derivative
vector in M ′ equals the normalized yIM direction vector

dl
3−D
xIM

= ∂λT (M ′) (A30)5

dl
3−D
yIM

= ∂φT (M ′) (A31)

In this paragraph, we only consider the oblique cases. Because the λ-direction is
undetermined for the polar cases with φM=− 90◦ and φM=90◦, they will be handled in
the next paragraph. Then, substituting Eqs. A24 and Eq. A27 respectively in Eqs. A30–
A31 we get10

−−−→
dl

3-D
xIM

= (− sin λM , cos λM ,0) (A32)
−−−→
dl

3-D
yIM

= (− cos λM sinφM ,− sin λM sinφM , cosφM ) (A33)

Using Eq. A3 and respectively Eqs. A32–A33 in Eqs. A28–A29 we obtain

l3-D
xIM

= R cosα(cos cos, sin cos, sinφM )
+(− sin λM , cos λM ,0)u

(A34)

15

l3-D
yIM

= R cosα(cos λM cosφM , sin λM )
+(− cos λM , sinφM ,− sin λM sinφM , cosφM ) v

(A35)

A2.4 The l3-D
xIM

and l3-D
yIM

including the SP and the NP

In case of a polar stereographic projection the chosen M coincides with the SP or the
NP with φM=SP=−90◦ or φM=NP=90◦ respectively. In those cases we need perpendic-
ular cartesian IM coordinates as well, but the lambda direction is undefined, so we can20
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not use Eq. A24. Therefore, in the polar cases, we take the limit of the φ-derivative

vector in point M ′ (study e.g. Fig. 2) and take that direction as the
−−−→
dl

3-D
yIM

. The
−−−→
dl

3-D
xIM

is constructed perpendicular to this
−−−→
dl

3-D
yIM

such that they form a cartesian coordinate
system pointing outward. The parameter representation for the south pole (φM=−90◦)
becomes5

l3-D
xIM

= (0,0,−R cosα) + (0,1,0) u (A36)

l3-D
yIM

= (0,0,−R cosα) + (1,0,0) v (A37)

And the parameter representation for the north pole (φM=90◦) becomes

l3-D
xIM

= (0,0, R cosα) + (0,1,0) u (A38)

l3-D
xIM

= (0,0, R cosα) + (−1,0,0) v (A39)10

Taking the undetermined λM equal to zero in Eqs. A34–A35 gives exactly the required
parameter representations for both polar cases as in Eqs. A36–A39. So, conveniently,
under the condition

λM = 0 for φM = −90 & φM = 90 (A40)

for all projection cases the same parameter representations15

l3-D
xIM

= R cos(cos λM , cosφM , sin λM cosφM , sinφM )

+(− sin λM , cos λM ,0)u (A41)

l3-D
yIM

= R cosα(cos λM cosφM , sin λM cosφM , sinφM )

+(− cos λM sinφM ,− sin λM sinφM , cosφM )v (A42)

can be used. Writing the components separately for the parameter representation l3-D
xIM

20

which describes the xIM axis in the 3-D rectangular coordinate system we have (see
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Eq. A41)

l3-D
xIM

:


x3-D = R cosα cos λM cosφM − (sin λM )u
y3-D = R cosα sin λM cosφM + (cos λM )u
z3-D = R cosα sinφM

(A43)

Writing the components separate for the parameter representation l3-D
xIM

which de-
scribes the yIM axis in the 3-D rectangular coordinate system we have (see Eq. A42)

5

l3-D
yIM

:


x3-D = R cosα cos λM cosφM − (cos λM sinφM )v
y3-D = R cosα sin λM cosφM − (sin λM sinφM )v
z3-D = R cosα sinφM + ( cosφM )v

(A44)

Both parameter equations Eqs. A43–A44 hold for any specified coordinate M.

A3 The coordinates yIMP ′
and yIMP ′

The relative position of P ′ to the l3-D
xIM

and l3-D
yIM

axes of the IM grid give the coordinates

xIMP ′
and yIMP ′

of P ′ in the IM grid. P ′, l3-D
xIM

and l3-D
yIM

are all situated in the plane S ′. We10

create a plane W1 (see Fig. 16) which is perpendicular to the line l3-D
xIM

and through P ′,

the point of intersection of W1 with l3-D
xIM

we call point Q1. Substituting the coordinates of

the parameter representation l3-D
xIM

into the equation for plane W1 will give the value of
u=uP ′ which equals the xIMP ′

coordinate. Analogue we create a plane W2 (see Fig. 17)

which is perpendicular to the line l3-D
yIM

and through P ′, the point of intersection of W215

with l3-D
yIM

we call point Q2. Substituting the coordinates of the parameter representation

l3-D
yIM

into the equation for plane W2 will give the value of v=vP ′ which equals the yIMP ′
coordinate.

To calculate uP ′ and vP ′ we first have to find the equations for the planes W1 and W2.
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A3.1 The equation for plane W1

Because
−−−→
dl

3-D
xIM

(see Eq. A32) is a normal vector to W1, in combination with Eq. C3, we
can create an equation for the plane W1 (see Fig. 16)

W1 : (− sin λM )x3-D + (cos λM )y3-D = k1 (A45)

Note that under condition (A40) this equation holds for all projection cases. To deter-5

mine k1 we substitute the point P ′ situated in plane W1, the coordinates of P ′ are given
by Eqs. A15–A17

− (sin λM )R ((cos λM cosφM )(tP ′ − 1) + (cos λP cosφP )tP ′)

+ (cos λM )R ((sin λM cosφM )(tP ′ − 1) + (sin λP cosφP )tP ′) = k1

The left terms cancel and we get10

k1 = R(cosφP )(sin λP cos λM − cos λP sin λM )tP ′

and with use of Eq. C6 we obtain

k1 = R(cosφP sin(λP − λM ))tP ′ (A46)

A3.2 Calculation of the parameter u=uP ′

Substituting the coordinates of the parameter representation l3-D
xIM

(A43) into Eq. A4515

for plane W1, gives the u=uP ′ for Q1

− (sin λM )(R cosα cos λM cosφM − (sin λM )uP ′

+ (cos λM )(R cosα sin λM cosφM + (cos λM )uP ′ = k1

The left terms cancel so we get

uP ′ = k120
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filling in Eq. A46 for k1 we get under condition (A40) for all projection cases

uP ′ = R(cosφP sin(λP − λM ))tP ′ (A47)

which is the xIMP ′
coordinate we are looking for.

A3.3 The equation for plane W2

Because
−−−→
dl

3-D
yIM

is a normal vector to W2, in combination with Eq. C3, we can create an5

equation for the plane W2 (see Fig. 17)

(− cos λM sinφM )x3-D + (− sin λM sinφM )y3-D + (cosφM )z3-D = k2 (A48)

To determine k2 we substitute the point P ′ situated in plane W2, the coordinates of
P ′ are given by Eqs. A15–A17

− (cos λM sinφM )R ((cos λM cosφM )(tP ′ − 1) + (cos λP cosφP )tP ′)10

− (sin λM sinφM )R ((sin λM cosφM )(tP ′ − 1) + (sin λP cosφP )tP ′)

+ ( cosφM )R ( (sinφM )(tP ′ − 1) + (sinφP )tP ′) = k2

The left terms cancel and we get

k2 = −R [(sinφM cosφP )(cos λM cos λP + sin λM sin λP ) − cosφM sinφP ] tP ′

which becomes with Eq. C515

k2 = R [cosφM sinφP − (sinφM cosφP ) cos(λM − λP )] tP ′ (A49)
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A3.4 Calculation of the parameter v=vP ′

Substituting the coordinates of the parameter representation l3-D
yIM

(A44) into Eq. A48
for the plane W2, gives the v for Q2

− (cos λM sinφM )(R cosα cos λM cosφM − (cos λM sinφM )vP ′)

− (sin λM sinφM )(R cosα sin λM cosφM − (sin λM sinφM )vP ′)5

+ (cosφM )(R cosα sinφM + (cosφM )vP ′ = k2

The left terms cancel and the right terms just add to one times vP ′ , with Eq. A49 for k2
resulting in

vP ′ = k2 = R [cosφM sinφP − (sinφM cosφP ) cos(λP − λM )] tP ′ (A50)

which is the yIMP ′
coordinate we are looking for.10

A4 The final oblique stereographic projection

The longitude-latitude coordinates λP and φP of an arbitrary point P on the spherical
surface S are projected to a rectangular plane S ′ which coincides with the IM grid
with origin M ′. As soon as the middle point of the area of interest on S is known by
specifying λM and φM the coordinates xIMP ′

and yIMP ′
of the projected point P ′ relative15

to the IM grid can be calculated by

xIMP ′
= uP ′ (A51)

yIMP ′
= vP ′ (A52)

The final result for the oblique stereographic projection is (see Eq. A47, Eq. A50 and
Eq. A18) under the condition (see Eq. A40)20

λM = 0◦ for φM = −90◦ & φM = 90◦ (A53)
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we have

xIMP ′
= R(cosφP sin(λP − λM ))tP ′ (A54)

yIMP ′
= R [sinφP cosφM − (cosφP sinφM ) cos(λP − λM )] tP ′ (A55)

with

tP ′ =
1 + cosα

1 + cosφP cosφM cos(λP − λM ) + sinφP sinφM
(A56)5

Appendix B

Derivation of the inverse oblique stereographic projection: from IM to GCM

In the inverse oblique stereographic projection the point P ′ with IM coordinates xIMP ′
and yIMP ′

is known, so in this case we have to find the longitude-latitude coordinates λP10

and φP of point P . Point P is obtained by projecting P ′ which is situated in plane S ′, to

the spherical surface S along the line
−−→
CP ′. We have to calculate the 3-D rectangular

coordinates of P , with which λP and φP can be determined.

But first we need a parameter representation
−−→
CQ along

−−→
CP ′ to determine the param-

eter t=tP for its point of intersection with S. To prepare the construction of
−−→
CQ, we15

first express
−−→
OP ′ in the given IM coordinates xIMP ′

and yIMP ′
. And for S we need an

equation of the spherical surface.

B1 Determing P

Projecting a point P ′, which is situated in plane S ′, along the line
−−→
CP ′ on the spherical

surface S gives the projected point P . We have to calculate the 3-D rectangular coor-20

dinates of P . First we express
−−→
OP ′ in the given IM coordinates xIMP ′

and yIMP ′
. Then
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we use
−−→
OM and

−−→
OP ′ to create the parameter repesentation

−−→
CQ. The parameter t at

the point of intersection of
−−→
CQ and S is obtained by substituting the coordinates of

−−→
CQ

with t=tP into the equation for S. With this tP the 3-D coordinates of P can be found

by substituting tP into
−−→
CQ.

B1.1 Calculation of
−−→
OP ′

5

The IM coordinates xIMP ′
and yIMP ′

of the given point P ′ situated in S ′ are used to

express
−−→
OP ′. From Fig. 2 in combination with Fig. 16 or Fig. 17 we see that

−−→
OP ′ =

−−−→
OM′ +

−−−→
dl

3-D
xIM

xIMP ′
+ yIMP ′

(B1)

substitution of Eq. A3 and Eqs. A32–A33 gives
−−→
OP ′ = R cosα(cos λM cosφM , sin λM cosφM , sinφM )10

+ (− sin λM ,− cos λM ,0)xIMP ′

+ (− cos λM sinφM ,− sin λM sinφM , cosφM )yIMP ′

The coordinates of P ′ equal the components of
−−→
OP ′=(x3-D

P ′ , y3-D
P ′ , z3-D

P ′ ) which are
given by

x3-D
P ′ = Rcosα cos λM cosφM − (sin λM )xIM

P ′ − (cos λM sinφM )yIMP ′
(B2)15

y3-D
P ′ = Rcosα sin λM cosφM + (cos λM )xIM

P ′ − (sin λM sinφM )yIMP ′
(B3)

z3-D
P ′ = Rcosα sinφM + (cosφM )yIMP ′

(B4)

B1.2 The parameter representation
−−→
CQ

In contrast to Eq. A5 we want to express
−−→
CQ this time relative to P ′, because the IM

coordinates of P ′ are given. The 3-D rectangular coordinates of P ′, expressed in the20
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IM coordinates xIMP ′
and yIMP ′

, are given by Eqs. B2–B4 and come into account via
−−→
OP ′.

If Q is a point situated on the line
−−→
CPprime then the parameter representation of

−−→
CQ

can be given with
−−→
CQ =

−−→
OC + (

−−→
OP ′ −

−−→
OC)t for some t ∈ R (B5)5

with
−−→
OC=−

−−→
OM as in Eq. A6 this becomes

−−→
CQ = −

−−→
OM + (

−−→
OP ′ +

−−→
OM)t (B6)

=
−−→
OM(t − 1) +

−−→
OP ′t (B7)

with
−−→
OM as in Eq. A1 and the components of

−−→
OP ′, equal to the coordinates of P ′ as in

Eqs. B2–B4, we get10

−−→
CQ = R (cos λM cosφM sin λM cosφM sinφM ) (t − 1) +

(
x3-D
P ′ , y3-D

P ′ , z3-D
P ′

)
t (B8)

So the coordinates of Q on
−−→
CQ=

(
x3-D
Q , y3-D

Q , z3-D
Q

)
expressed in t are

x3-D
Q = R(cos λM cosφM )(t − 1) + x3-D

P ′ t (B9)

y3-D
Q = R(sin λM cosφM )(t − 1) + y3-D

P ′ t (B10)

z3-D
Q = R( sinφM )(t − 1) + z3-D

P ′ t (B11)15

with 3-D
P ′ , y3-D

P ′ and z3-D
P ′ as in Eqs. B2–B4.

B1.3 The equation for S

Because the radius of the earth is R, the equation for the spherical earth surface S in
R3 with Eq. C4 is

S :
(
x3-D
P

)
+
(
y3-D
P

)
+
(
z3-D
P

)
= R2 (B12)20
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B1.4 Determining the parameter t=tP for P

P is situated at the intersection of
−−→
CQ and S. To obtain tP we substitute the 3-D

rectangular components of
−−→
CQ given by Eqs. B9–B11 with t=tP into the plane Eq. B12

for S[
R(cos λM cosφM )(tP − 1) + x3-D

P ′

]
t2
P5

+
[
R(sin λM cosφM )(tP − 1) + y3-D

P ′

]
t2
P

+
[
R( sinφM )(tP − 1) + z3-D

P ′

]
t2
P = R2

which equals

R2(cos λM cosφM )2(tP − 1)2 + 2R(cos λM cosφM )x3-D
P ′ (tP − 1)tP +

(
x3-D
P ′

)2
t2
P

+ R2(sin λM cosφM )2(tP − 1)2 + 2R(sin λM cosφM )y3-D
P ′ (tP − 1)tP +

(
3-D
P ′

)2
t2
P10

+ R2( sinφM )2(tP − 1)2 + 2R( sinφM )z3-D
P ′ (tP − 1)tP +

(
z3-D
P ′

)2
t2
P = R2

the left squared gonio-terms sum up to one, so we get

R2(tP − 1)2 +
((

x3-D
P ′

)2
+
(
y3-D
P ′

)2
+
(
z3-D
P ′

)2
)
t2
P

+ 2R
((

cos λM cosφM )x3-D
P ′ + (sin λM cosφM ) y3-D

P ′ + (sinφM

)
z3-D
P ′

)
(tP − 1)tP = R2

and then15

R2t2
P − 2R2tP + R2 + bt2

P + 2Rat2
P − 2RatP = R2
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with

a = (cos λM cosφM )x3-D
P ′ + (sin λM cosφM )y3-D

P ′ + (sinφM )z3-D
P ′

b = (x3-D
P ′ )2 + (y3-D

P ′ )2 + (z3-D
P ′ )2

which equals

(R2 + 2Ra + b)t2
P = (2R2 + 2Ra)tP5

One solution tP=0 gives point C, which we are not looking for. In the other case
tP 6=0, so we can divide by tP and end up with

tP =
2R2 + 2Ra

R2 + 2Ra + b
(B13)

finally we write for tP

tP =
2R2 + 2Ra

R2 + 2Ra +
(
x3-D
P ′

)2
+
(
y3-D
P ′

)2
+
(
z3-D
P ′

)2
(B14)10

with

a = (cos λM cosφM )x3-D
P ′ + (sin λM cosφM )y3-D

P ′ + (sinφM )z3-D
P ′ (B15)

B1.5 The 3-D rectangular coordinates of P

The 3-D rectangular coordinates of P can be obtained by taking t=tP in Eqs. B9–B11

for the components of
−−→
CQ. So the coordinates of P can be given by15

x3-D
P = R(cos λM cosφM )(tP − 1) + x3-D

P ′ tP (B16)

y3-D
P = R(sin λM cosφM )(tP − 1) + y3-D

P ′ tP (B17)

z3-D
P = R( sinφM )(tP − 1) + z3-D

P ′ tP (B18)
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with tP as in Eq. B14

tP =
2R2 + 2Ra

R2 + 2Ra +
(
x3-D
P ′

)2
+
(
y3-D
P ′

)2
+
(
z3-D
P ′

)2
(B19)

with a as in Eq. B15

a = (cos λM cosφM )x3-D
P ′ + (sin λM cosφM )y3-D

P ′ + (sinφM )z3-D
P ′ (B20)

with x3-D
P ′ , y3-D

P ′ and z3-D
P ′ as in Eqs. B2–B45

x3-D
P ′ = R cosα cos λM cosφM − sin λM )xIMP ′

− (cos λM sinφM )yIMP ′
(B21)

y3-D
P ′ = R cosα sin λM cosφM + (cos λM )xIMP ′

− (sin λM sinφMyIMP ′
(B22)

z3-D
P ′ = R cosα sinφM + (cosφM )yIMP ′

(B23)

B2 The inverse projected λP

Considering the positive and negative values of the coordinates of P in the different10

quadrants the λP can be determined. The λP for an arbitrary point P , inverse projected
from a point P ′ in S ′ to S, is given by

λP = 180◦ +180
π arctan

y3-D
P

x3-D
P

λP = 180
π arctan

y3-D
P

x3-D
P

λP = 360◦ +180
π arctan

y3-D
P

x3-D
P

λP = 90◦

λP = 270◦

λP = 0◦


for

x3-D
P < 0

x3-D
P > 0 & y3-D

P ≥ 0

x3-D
P > 0 & y3-D

P < 0

x3-D
P = 0 & y3-D

P > 0

x3-D
P = 0 & y3-D

P < 0

x3-D
P = 0 & = 0

(B24)

with x3-D
P and y3-D

P as in Eqs. B16 and B17.
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B3 The inverse projected φP

And the φP for the arbitrary point P , inverse projected from a point P ′ in S ′ to S, is
given by

φP = 180
π arctan

z3-D
P√

x3-D
P

2
+y3-D

P
2

φP = 90◦

φP = −90◦

 for

x3-D
P 6= 0 or y3-D

P 6= 0

x3-D
P = y3-D

P = 0 & z3-D
P > 0

x3-D
P = y3-D

P = 0 & z3-D
P < 0

(B25)

with x3-D
P , y3-D

P and z3-D
P as in Eqs. B16–B18. We omited the trivial case5

x3-D
P =y3-D

P =z3-D
P =0.

Appendix C

Some basic geometrical math

Points lying on the surface of an arbitrary sphere K with radius RK can be described in10

geographical coordinates in R3 with λ, φ and r :

K : (λ,φ, r) = (λ,φ,RK ) (C1)

The same sphere K described in rectangular cartesian coordinates x3-D, y3-D and z3-D

in R3 can be expressed in terms of the 3-D spherical angle coordinates and the radius
RK of sphere K (see Fig. 1):15

K :
(
x3-D, y3-D, z3-D

)
= RK (cos λ cosφ, sinφλ cosφ, sinφ) (C2)

If L is a plane in R3 with a normal vector N=(nx, ny , nz) in rectangular coordinates in

R3, then plane L in R3 can be given by the equation

L : nxx
3-D + n3-D

y + nzz
3-D = k for some k ∈ R (C3)
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The equation for a sphere with radius RK is

x2 + y2 + z2 = R2
K for (x, y, z) ∈ R3 (C4)

Two goniometric summation rules we will use are

cos(a) cos(b) + sin(a) sin(b) = cos(a − b) = cos(b − a) (C5)

sin(a) cos(b) − cos(a) sin(b) = sin(a − b) = − sin(b − a) (C6)5
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Table 1. Overview of the mapping experiments. The first column numbers the various mapping
experiments for several areas and data sets. The IM grid sizes Nx, Ny , the grid spacing ∆x=∆y
(in km), the intersection angle α, and the coordinates of the middle point of interest M(λM ,
φM ) (in ◦) are listed. The data sets are specified in Table 2. All α are as given by Eq. (2.2)
except for Antarcica where a little smaller α of 19◦ is used. The search radius Rs is shown for
those experiments which use the radius method for the IM-GCM mapping. If Rs is absent the
quadrant method is used, like for all GCM-IM mappings. And N is the amount of points which
are involved in the mapping.

no area data Nx Ny ∆x α λM φM Rs N
set (km) (◦) (◦) (◦) (km)

1 Antarctica A 281 281 20 19.0 0.0 -90.0 125.0 1268
2 Greenland A 76 141 20 7.5 320.0 72.0 125.0 160
3 Himalaya A 200 200 20 14.5 90.0 32.0 125.0 195
4 Greenland RG2 153 283 10 7.5 320.0 72.0 34880
5 Ellesmere RG2 211 281 3 2.6 278.2 79.8 4.4 4328
6 Svalbard RG2 200 235 2 1.6 18.2 78.5 4.4 1529
7 Iceland RG2 271 200 2 1.7 341.2 65.0 4.4 1736
8 Jakobshavn RG2 200 200 2 1.4 308.7 70.0 4.4 1268
9 Helheim RG2 200 200 2 1.4 323.9 67.1 4.4 1268
10 Humboldt RG2 200 200 2 1.4 298.0 80.0 4.4 1284
11 Storstrømmen RG2 200 200 2 1.4 336.3 76.7 4.4 1272
12 Antarctica RA 281 281 20 19.0 0.0 -90.0 10367
13 Amery RA 200 200 4 2.9 67.9 -73.1 22.0 206
14 Peninsula RA 200 200 4 2.9 291.5 -72.2 22.0 204
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Table 2. This table lists the GCM model with which each data set is created, and the area and
epoch of that run. The references describe these model runs.

data set model area epoch reference

A CCSM3 global Dec–Feb averaged Collins et al. (2005)
RG2 RACMO Greenland 1990–2007 averaged Ettema et al. (2009)
RA RACMO Antarctica 1980–2004 averaged Van de Berg et al. (2006)
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Table 3. The table presents for each mapping experiment the field range and field average
for comparison with the average mapped deviation (AMD) and its standard deviation (σ). The
AMD is the field average of (the absolute values of) the deviations of the to and fro mapped
GCM field, and is used to quantify the quality of the mapping. About 95% of the mapped field
deviations (all inside the range of 94–99%) lays within the 2-σ interval. The range relative
deviation RRD is the AMD divided by the field range, in percent.

no area data set field range field average AMD 2σ RRD (%)

Ts (Kelvin)
1 Antarctica A 240.2 277.6 259.6 0.04 0.18 0.11
2 Greenland A 238.8 280.0 249.5 0.15 0.50 0.37
3 Himalaya A 251.5 301.5 273.5 0.06 0.20 0.12
4 Greenland RG2 240.4 282.5 260.2 0.12 0.70 0.27
5 Ellesmere RG2 242.8 263.0 254.3 0.06 0.24 0.30
6 Svalbard RG2 256.0 276.0 267.2 0.06 0.28 0.32
7 Iceland RG2 265.2 281.8 276.0 0.03 0.15 0.20
8 Jakobshavn RG2 248.5 270.8 261.6 0.05 0.25 0.23
9 Helheim RG2 246.1 277.5 260.6 0.03 0.17 0.10
10 Humboldt RG2 244.0 259.1 251.3 0.03 0.14 0.20
11 Storstrømmen RG2 243.5 263.9 253.8 0.03 0.12 0.13
12 Antarctica RA 212.0 278.5 253.3 0.05 0.22 0.07
13 Amery RA 225.1 254.9 238.7 0.03 0.14 0.11
14 Peninsula RA 245.8 267.8 257.3 0.06 0.22 0.28

MB (meter ice equivalent per year)
1 Antarctica A 0.00 0.61 0.16 0.001 0.005 0.20
2 Greenland A 0.12 1.17 0.34 0.003 0.014 0.33
3 Himalaya A 0.00 1.02 0.21 0.002 0.010 0.24
4 Greenland RG2 −3.18 4.22 −0.10 0.018 0.114 0.25
5 Ellesmere RG2 −1.52 1.18 −0.42 0.006 0.026 0.23
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Table 3. Continued.

no area data set field range field average AMD 2σ RRD (%)

MB (meter ice equivalent per year)
6 Svalbard RG2 −1.15 0.99 −0.17 0.006 0.027 0.30
7 Iceland RG2 −2.46 2.07 −0.08 0.010 0.044 0.22
8 Jakobshavn RG2 −2.91 0.71 −0.43 0.006 0.033 0.18
9 Helheim RG2 −1.08 3.69 0.90 0.006 0.029 0.13
10 Humboldt RG2 −1.35 0.54 −0.33 0.004 0.016 0.19
11 Storstrømmen RG2 −1.73 0.37 −0.27 0.003 0.013 0.12
12 Antarctica RA −0.35 4.36 0.44 0.003 0.026 0.07
13 Amery RA −0.04 0.42 0.09 0.001 0.005 0.22
14 Peninsula RA −0.08 3.33 0.67 0.010 0.040 0.29

Hs (meter)
1 Antarctica A −111 3629 1338 3.1 10.9 0.08
2 Greenland A −65 2397 882 5.2 20.1 0.21
3 Himalaya A −21 5034 1537 7.7 27.6 0.15
4 Greenland RG2 −12 3227 922 6.8 38.1 0.21
5 Ellesmere RG2 −10 1777 305 2.8 10.9 0.16
6 Svalbard RG2 −10 1111 116 1.7 7.4 0.15
7 Iceland RG2 −24 1672 241 1.8 7.3 0.11
8 Jakobshavn RG2 0 2529 788 2.2 10.4 0.09
9 Helheim RG2 0 3088 1354 1.8 7.9 0.06
10 Humboldt RG2 0 2220 887 1.6 6.4 0.07
11 Storstrømmen RG2 −10 2626 1035 1.3 5.6 0.05
12 Antarctica RA 0 4056 858 3.5 20.9 0.09
13 Amery RA 31 3164 1880 3.2 12.1 0.10
14 Peninsula RA 0 1930 497 7.4 25.9 0.38
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Fig. 1. The figure shows the axes and their orientation for the 3-D cartesian rectangular co-
ordinate system (x3-D, y3-D, z3-D) and the 3-D spherical coordinate system (λ, φ, r). The
spherical coordinate λ lies in the x3-Dy3-D-plane, while the spherical coordinate φ equals the
angle OQP which lies in a plane perpendicular to this x3-Dy3-D-plane. Above this x3-Dy3-D-
plane φ is positive while below it φ is negative. As in a cartesian spherical system, λ is chosen
counter-clockwise positive and r is positive outward. P (λ+λP , φ=φP , r=R) is a point on the
sphere S with radius R. Here P lies in the first octant in which all coordinates are positive.
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Fig. 2. The figure shows a GCM point P which is projected on S ′ along the line
−−→
CP . The

projected point P ′ is situated in plane S ′ which coincides with the red colored IM grid. The
coordinates of P ′ in the IM grid which coincides with S ′ are indicated by the components (in
green) relative to the IM axes. The global GCM grid coincides with the spheric surface S. The
IM is a regional model and therefore has a relatively small extent, see the red colored IM grid.
Note that a relative small IM grid is sketched, with a well chosen α the horizontal extent will be
larger than the M ′ drawn here.
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Fig. 3. This cross section shows how the position of the plane S ′ is determined by α. S ′ is
parallel to the plane which is tangent to the sphere S in point M and S ′ is shifted a certain

distance MM ′ along
−−→
OM. This distance is determined by the intersection point I which is

controlled by α. The choice of α thus determines the distance MM ′.
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Fig. 4. The figure illustrates the interpolation: through each grid point (xIM(m), yIM(n)) we draw
an imaginary cross (red cross) that divides the area around the grid point into four quadrants.
Then in each quadrant we determine the projected GCM grid point that lies closest to xIM(m),
yIM(n) (blue crosses). Those points we call P ′

I , P ′
I I , P

′
I I I and P ′

IV .
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°Fig. 5. The figure shows a global image of the surface temperature field between −87◦ and
+87◦ north (the color scale is in Kelvin). On top, in black, the CCSM grid of the atmosphere
component at T42 resolution is shown.
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Fig. 6. The figure shows an image of the surface heigth of Antarctica (the color scale is in
meter). On top, in black, the relative fine IM grid is shown, which is in reality five times finer
with a grid spacing of 20 km. The origin of the IM grid M ′(xIM(m=141)=0, yIM(n=141) = 0)
represents the South Pole, where m and n are the IM grid numbers in the x- and y-direction
respectively.
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Fig. 7. The figure shows top-down for Antarctica (data set A) the initial GCM fields (left panels), the mapped IM fields (right panels) and the differences
in the GCM fields after to and fro mapping (central panels) for Ts , MB, Hs , and the distributions of those differences after to and fro mapping. The surface
temperature Ts (in Kelvin), the surface height Hs (in meters), and the surface mass balance MB (in meter ice equivalent (mieq) per year) are indicated by the
color bars left of each field panel. For convenience the points in the distribution graphs between 1σ and 2σ are plotted blue, and the points within 1σ are
connected by a spline.
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Fig. 8. This figure concerns Greenland (data set A), see further the caption of Fig. 7.
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Fig. 9. This figure concerns Greenland (data set RG2), see further the caption of Fig. 7.
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Fig. 11. This figure concerns Svalbard (data set RG2), see further the caption of Fig. 7.
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Fig. 12. This figure concerns Iceland (data set RG2), see further the caption of Fig. 7.
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Interactive DiscussionFig. 13. This figure concerns Jakobshavn (data set RG2), see further the caption of Fig. 7.
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Interactive DiscussionFig. 14. This figure concerns Antarctica (data set RA), see further the caption of Fig. 7.
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Fig. 15. This figure concerns Ross (data set RA), see further the caption of Fig. 7.
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Fig. 16. The figure shows how plane W1 is created: perpendicular to the l3-D
xIM

axis and through
P ′. The red distance between M ′ and Q1 is u=uP ′ which is the value of the xIMP ′

coordinate.
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Fig. 17. The figure shows how plane W2 is created: perpendicular to the l3-D
xIM

axis and through
P ′. The red distance between M ′ and Q2 is v=vP ′ which is the value of the yIMP ′

coordinate.
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